

micro:bit and SPI using DAC MCP4911

Hans-Petter Halvorsen

Contents

- Introduction to micro:bit and Python/MicroPython
- Using the built-in Temperature Sensor
- micro:bit I/O Pins
 - Analog and Digital Pins used for communication with external components, like LEDs, Temperature Sensors, etc.
- TC74 Temperature Sensor with I2C Interface
- I2C and micro:bit
- TC74 and I2C Python Examples

Introduction to micro:bit

Hans-Petter Halvorsen

Table of Contents

micro:bit

- micro:bit is a small microcontroller
- micro:bit is smaller than a credit card
- Price is about 150-400NOK (\$15-30)
- It can be used by kids and students to learn programming and technology
- micro:bit can run a special version of Python called MicroPython
- MicroPython is a down-scaled version of Python
- micro:bit Python User Guide <u>https://microbit.org/get-started/user-guide/python/</u>
- micro:bit MicroPython documentation <u>https://microbit-micropython.readthedocs.io</u>

https://microbit.org

Mu Python Editor

- Mu is a Python code editor for beginners
- It is tailor-made for micro:bit programming
- Mu has a "micro:bit mode" that makes it easy to work with micro:bit, download code to the micro:bit hardware, etc.
- Mu and micro:bit Tutorials: <u>https://codewith.mu/en/tutorials/1.0/microbit</u>

Mu Python Editor

Built-in Temperature Sensor

Hans-Petter Halvorsen

Table of Contents

- Micro:bit has a built-in Temperature Sensor (that is located on the CPU)
- This sensor can give an approximation of the air temperature.
- Just use the built-in temperature() function in order to get the temperature value from the sensor

In order to read the temperature, you just use the built-in temperature() function:

from microbit import *

currentTemp = temperature()

This examples displays the temperature on the LED matrix: from microbit import * while True: if button_a.was_pressed(): display.scroll(temperature())

https://microbit.org/get-started/user-guide/features-in-depth/#temperature-sensor

🕜 Mu 1	.1.1 - temp_ex.py	- 🗆 X		
Image: Mode Load Save Files REPL Plotter Zoom-in Zoom-out Theme Check Tidy Help Quit				
temp_ex.py 🗶				
1	1 from microbit import *			
2				
3	while True:			
4	<pre>4 currentTemp = temperature()</pre>			
5	<pre>print(currentTemp)</pre>			
6		from microbit import *		
7	sleep(2000)			
		while True:		
BBC micro:bit REPL				
28		currentTemp = temperature()		
28		print(currentTemp)		
28		princ(carreneremp)		
28				
27		a_{1} com (2000)		
27		sieep(2000)		
27				
27				
		BBC micro:bit		

Display Min/Max Temperature

from microbit import *

```
currentTemp = temperature()
maxTemp = currentTemp
minTemp = currentTemp
```

```
while True:
    currentTemp = temperature()
```

```
if currentTemp < minTemp:
    minTemp = currentTemp
if currentTemp > maxTemp:
    maxTemp = currentTemp
```

```
if button_a.was_pressed():
    display.scroll(minTemp)
elif button_b.was_pressed():
    display.scroll(maxTemp)
else:
    display_scroll(surrentTo
```

display.scroll(currentTemp)

print((currentTemp, minTemp, maxTemp))
sleep(2000)

If you do nothing, the LED matrix shows the Current Temperature.

If you click A Button, the Minimum Temperature for the period (since you started the program/turned on the Micro:bit) is shown on the LED matrix

If you click B Button, the Maximum Temperature for the period (since you started the program/turned on the Micro:bit) is shown on the LED matrix

micro:bit I/O Pins

Hans-Petter Halvorsen

Table of Contents

micro:bit I/O Pin Overview

I/O Pins

- We use the I/O pins to connect external components like LEDs, different types of Sensors, etc.
- You can use 4mm Banana plugs or Alligator/Crocodile clips
- Typically, you also want to use a Breadboard

https://makecode.microbit.org/device/crocodile-clips

Types of I/O Pins

- Analog/Digital Input/Output Pins
- Pulse Width Modulation (PWM)
- SPI
- I2C
- UART (used for serial communication)

https://microbit-micropython.readthedocs.io/en/latest/pin.html

We will only use an Analog/Digital Input/Output pins in this Tutorial

Adapter Breakout Board for micro:bit

We can also use an Adapter Breakout Board for micro:bit instead of Alligator/Crocodile clips

This makes it easier to wire for more advanced circuits and use of more in inputs/outputs pins

Adapter Breakout Board for micro:bit

Here you see see the wirings using an Adapter Breakout Board for micro:bit

SPI

XXX

Hans-Petter Halvorsen

Table of Contents

SPI

- Serial Peripheral Interface (SPI)
- 4–Wire Protocol (SCLK, CE, MOSI, MISO)
- SPI is an interface to communicate with different types of electronic components like Sensors, Analog to Digital Converts (ADC), etc. that supports the SPI interface
- Thousands of different Components and Sensors supports the SPI interface

https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/

SPI

SPI devices communicate in full duplex mode using a master-slave architecture with a single master

The SPI bus specifies four logic signals:

- SCLK: Serial Clock (output from master)
- MOSI: Master Out Slave In (data output from master)
- MISO: Master In Slave Out (data output from slave)
- CE (often also called SS Slave Select): Chip Select (often active low, output from master)

SPI with micro:bit

Initialize I2C Communication:

```
i2c.init(freq=100000, sda=pin20, scl=pin19)
```

(No need to change anything here)

Read Data from the connected I2C device:

i2c.read(addr, n, repeat=False)

Read n bytes from the device with 7-bit address addr. If repeat is True, no stop bit will be sent.

https://microbit-micropython.readthedocs.io/en/v2-docs/spi.html

Hans-Petter Halvorsen

Table of Contents

DAC – MCP4911

- DAC Digital to Analog Converter
- Arduino UNO has no real Analog Out Channel only Digital PWM channels
- We can use an external DAC in order to provide a real Analog Out
- MCP4911 is a single channel, 10-bit DAC with an external voltage reference and SPI interface

MCP49xx

MCP49xx is a family of DAC ICs:

- MCP4901: 8-Bit Voltage Output DAC
- MCP4911: 10-Bit Voltage Output DAC
- MCP4921: 12-Bit Voltage Output DAC

The different MCP49xx DACs work in the same manner, the only difference is the resolution (8, 10, or 12 resolution)

Datasheet: <u>https://www.microchip.com/en-us/product/MCP4911</u>

MCP4911 - Wiring

Test Setup

Python Examples MCP4911

Hans-Petter Halvorsen

Table of Contents

Breakout Board

For easy wiring using I2C, a Breakout board is recommended. Many different types do exist. In this tutorial "Sparkfun Microbit Breakout" board will be used.

Sparkfun Microbit Breakout <u>https://learn.sparkfun.com/tutorials/microbit</u> <u>-breakout-board-hookup-guide</u>

Pin	Function 1	Function 2	Description
GND			Ground
GND			Ground
3V3			3.3V
0	Analog In		Connected to large pin 0
1	Analog In		Connected to large pin 1
2	Analog In		Connected to large pin 2
3	Analog In	LED Column 1	Controls part of LED array
4	Analog In	LED Column 2	Controls part of LED array
5		Button A	Connected to Button A on micro:bit
6		LED Column 9	Controls part of LED array
7		LED Column 8	Controls part of LED array
8			Open GPIO pin
9		LED Column 7	Controls part of LED array
10	Analog In	LED Column 3	Controls part of LED array
11		Button B	Connected to Button B on micro:bit
12			Open GPIO pin
13	SCK		GPIO or SPI clock
14	MISO		GPIO or SPI MISO
15	MOSI		GPIO or SPI MOSI
16			Open GPIO pin
19	SCL		GPIO or I ² clock
20	SDA		GPIO or I ² data

Python

from microbit import *

```
i2c.init(freq=100000, sda=pin20, scl=pin19)
```

```
address = 0x48
```

```
data = i2c.read(address, 1, repeat=False)
print(data) # Data received is a byte object
```

```
# Converting to int. Resolution for TC74 Sensor is +/-1°C
# byteorder is big where MSB is at start
temp = int.from_bytes(data, "big")
print(temp)
display.scroll(temp)
```

```
from microbit import *
```

```
i2c.init(freq=100000, sda=pin20, scl=pin19)
```

```
address = 0x48
```

```
while True:
    data = i2c.read(address, 1, repeat=False)
    # print(data) # Data received is a byte object
```

```
# Converting to int. Resolution for TC74 Sensor is +/-1°C
# byteorder is big where MSB is at start
temp = int.from_bytes(data, "big")
print(temp)
display.scroll(temp)
```

sleep(5000)

```
P Mu 1.1.1 - tc74_ex2.py
                                                                                                          _
                                                                                                              X
            1
                 .
                        ÷
                             o
                                 (Ð
                                                     Q
                                                           C
                                                                 (Ξ)
                                                                                  ር
                                                                            ?
                                  REPL Plotter Zoom-in Zoom-out Theme Check
Mode
       New
            Load
                 Save
                        Flash
                             Files
                                                                      Tidy
                                                                            Help
                                                                                  Quit
tmp36_led.py 🗶 tc74_ex.py 🗶 tc74_ex2.py 🗶
   1 from microbit import *
  2
  3 i2c.init(freg=100000, sda=pin20, scl=pin19)
   4
     address = 0x48
   5
   6
     while True:
  7
          data = i2c.read(address, 1, repeat=False)
   8
          # print(data) # Data received is a byte object
  9
  10
  11
          # Converting to int. Resoulution for TC74 Sensor is +/-1°C
          # byteorder is big where MSB is at start
  12
          temp = int.from_bytes(data, "big")
  13
         print(temp)
  14
          display.scroll(temp)
                                                                                               Ι
  15
  16
         sleep(5000)
  17
BBC micro:bit REPL
MicroPython v1.15-64-g1e2f0d280 on 2021-06-30; micro:bit v2.0.0 with nRF52833
                                                                                                                \Delta
Type "help()" for more information.
>>>
>>> 28
30
32
33
32
32
                                                                                                                \nabla
                                                                                                  BBC micro:bit
```

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

